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Abstract

Organizations frequently rely on formal titles to structure influence in collective

decision-making, especially when individual expertise is heterogeneous and difficult to

observe directly. This paper studies how hierarchical titles can be designed to improve

decision quality by shaping whose judgments carry greater authority. We show that ti-

tles act as an informational device: by summarizing imperfect evaluations of expertise,

they allow organizations to concentrate decision authority on more reliable contribu-

tors, providing a rationale for the empirical correlation between higher rank and greater

influence in decision-making. The analysis reveals a fundamental tradeoff in organiza-

tional design. While more intensive evaluation and finer rank differentiation improve

decision accuracy, the informational gains from both dimensions exhibit sharply di-

minishing returns. As a result, when maintaining evaluations and hierarchy is costly,

optimal organizations adopt finite screening and shallow hierarchies, with relatively

simple title structures capturing most of the benefits of information aggregation.
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1 Introduction

Modern organizations increasingly make important decisions in teams whose members have

limited firsthand knowledge of one another’s expertise. Employee–employer relationships

are often short-lived—average job tenure in the U.S. private sector is under four years (U.S.

Bureau of Labor Statistics, 2024)—and many firms rely on decentralized and team-based

forms of collaboration that draw on specialized knowledge from different units (Bloom and

Van Reenen, 2010; Bloom, Sadun, and Van Reenen, 2012b). At the same time, organizations

frequently adjust their internal hierarchical structures and reporting relationships in response

to technological change, market conditions, and competitive pressures, including changes in

spans of control and the number of managerial layers (Rajan and Wulf, 2006; Bloom, Sadun,

and Reenen, 2012a). Together, these features limit opportunities for long-term learning

about coworkers’ capabilities and make it common for individuals to collaborate with col-

leagues they have not worked with before.

Decision-making in such environments is particularly challenging. When collaborators

lack reliable, experience-based information about one another’s competence, they cannot

easily assess whose judgments are more informative. Yet many organizational decisions are

complex and high-stakes, so treating all opinions as equally reliable is rarely optimal. As a

result, organizations face a fundamental design problem: how to structure influence within

teams when expertise is heterogeneous but not directly observable.

In the absence of direct knowledge of expertise, organizations rely on institutional sub-

stitutes to guide collective decision-making. Formal titles—such as manager, director, or

vice president—are especially prominent because they are publicly observable and organiza-

tionally endorsed. Although titles also govern reporting relationships and career incentives,

they can be viewed as coarse summaries of prior evaluations of performance and ability.

In practice, titles shape how information is aggregated: teams rarely treat all contributions

symmetrically, and higher-ranked individuals tend to receive greater influence when opinions

conflict or evidence is noisy. This creates an implicit aggregation rule in which rank deter-
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mines decision authority, raising a natural design question: how finely should organizations

differentiate titles, and how much information should they invest in doing so, in order to

improve decision quality without incurring unnecessary organizational cost.

The study of hierarchy has deep roots in organizational economics. Early work empha-

sizes hierarchy as a response to bounded rationality and coordination constraints, allowing

complex decision problems to be structured across organizational levels (Simon, 1947). Sub-

sequent formal models characterize hierarchy as an information-processing architecture that

economizes on communication and coordination costs in large organizations (Radner, 1993).

More recent work focuses on three related roles of hierarchy: as a mechanism for allocating

authority under communication frictions (Garicano and Prat, 2011), as an organizational re-

sponse to incentive and monitoring problems (Garicano and Rossi-Hansberg, 2006), and as

a determinant of managerial structure and spans of control in response to technological and

competitive forces (Rajan and Wulf, 2006; Bloom et al., 2012a). Across these contributions,

hierarchy serves a variety of organizational functions, but its role as a device for structuring

information aggregation remains comparatively underexplored.

As a result, there is limited guidance on how the depth and granularity of hierarchy

should be designed when titles primarily act as signals of expertise. Existing work provides

little insight into how finely organizations should differentiate ranks, or how the informa-

tional gains from more detailed evaluations trade off against the organizational costs of

maintaining a more complex hierarchy. When titles summarize imperfect assessments of

ability, additional hierarchical layers can sharpen distinctions in expected expertise and im-

prove decision quality, but they may also increase administrative burden and organizational

complexity. Understanding this tradeoff requires treating hierarchy depth and evaluation

intensity as explicit design choices in an information aggregation problem.

This paper studies a collective decision-making environment in which an organization

aggregates assessments from a large number of individuals whose expertise is heterogeneous

and not directly observable. Individuals observe noisy signals about a common underlying
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state, and the organization can invest in evaluations—such as tests, performance reviews, or

certifications—that imperfectly reveal individual expertise. Evaluation outcomes are sum-

marized by a finite set of observable titles, which serve as coarse indicators of expected

expertise. Titles play no role in incentives, reporting lines, or communication; instead, they

affect decisions only by shaping how individual assessments are weighted in the collective

choice.

Building on standard results in the information aggregation literature (Nitzan and Paroush,

1982; Shapley and Grofman, 1984), we take the aggregation rule as given and focus on the

organizational design problem. Using this framework, we study how decision accuracy re-

sponds to two design margins: the intensity of evaluation, which governs how informative

titles are about expertise, and the depth of hierarchy, which determines how finely evaluation

outcomes are translated into rank categories. We show that both margins improve decision

quality by concentrating influence on more reliable individuals, but that their informational

benefits exhibit sharply diminishing returns. Consequently, the optimal organizational de-

sign features a finite level of screening and a finite depth of hierarchy: relatively simple title

structures capture most of the attainable gains from information aggregation, while further

differentiation adds complexity with little additional benefit.

Related literature: This paper contributes to a large literature on organizational hierar-

chy by isolating and formalizing one specific function of hierarchical structure: its role in ag-

gregating dispersed information when individual expertise is heterogeneous and imperfectly

observed. A broad range of existing work studies hierarchy through other lenses, including

bounded rationality, incentives and monitoring, authority allocation, communication, and

problem solving. While these contributions provide deep insights into why hierarchies arise

and how they shape organizational behavior, they typically abstract from the informational

design problem that is central to our analysis.

As mentioned earlier, the study of hierarchy has deep roots in organizational economics.
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Early work emphasizes hierarchy as an efficient response to bounded rationality and co-

ordination constraints in complex organizations. Simon (1947) argues that hierarchical

decomposition allows organizations to cope with cognitive limits by structuring complex

decisions across multiple levels. Radner (1993) formalizes this perspective by modeling hi-

erarchy as an information-processing architecture that economizes on communication and

coordination costs in large organizations, with related contributions emphasizing the role of

hierarchy in managing complexity and coordinating large systems (Marschak and Radner,

1972; Van Zandt, 1997). In this foundational literature, hierarchical structure is typically

treated as an organizational primitive: the depth and granularity of hierarchy are taken as

given, rather than as design variables chosen to improve decision accuracy.

A large body of work studies hierarchy as a mechanism for allocating authority, providing

incentives, and mitigating monitoring problems within organizations. Classic models analyze

how layered hierarchical structures address moral hazard, free riding, and effort provision in

teams (Holmstrom, 1982; Mookherjee, 1984; McAfee and McMillan, 1991), while subsequent

contributions examine how authority, ownership, and control interact with incentives under

incomplete contracts (Baker, Gibbons, and Murphy, 1999, 2002). Related work emphasizes

hierarchy as an allocation of decision rights under communication frictions, analyzing how

authority and delegation shape organizational performance when information is costly to

transmit or acquire (Bolton and Dewatripont, 1994; Aghion and Tirole, 1997). More recent

theoretical and empirical contributions study how delegation, centralization, and manage-

rial structure respond to communication constraints, technological change, and competitive

pressures (Dessein, 2002; Rantakari, 2008; Alonso and Matouschek, 2008; Alonso, Dessein,

and Matouschek, 2008; Bloom et al., 2012a). Across this literature, hierarchy primarily

governs incentives, authority, and control. By contrast, we abstract entirely from incen-

tives, monitoring, strategic communication, and delegation, and instead focus on hierarchy

as an informational device that structures how dispersed assessments are aggregated into a

collective decision.
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A closely related strand of the literature studies how collective decisions aggregate het-

erogeneous information. Early contributions by Sah and Stiglitz (1986, 1988) compare hi-

erarchical and polyarchical decision structures in terms of their error properties. Work by

Nitzan and Paroush (1982) and Shapley and Grofman (1984) characterizes optimal weighting

schemes for aggregating signals of unequal reliability, showing that differential influence can

improve decision accuracy when information quality differs. Related results appear in mod-

els of voting and information aggregation with heterogeneous expertise (Condorcet, 1785;

Austen-Smith and Banks, 1996). While these papers establish the value of unequal weight-

ing, they typically take the aggregation structure as given and do not study how hierarchical

categories or titles should be designed endogenously, nor how the depth of hierarchy trades

off against organizational costs.

A related strand of the literature studies hierarchy as a mechanism for allocating problem-

solving tasks and specialized knowledge. In influential work, Garicano (2000) models orga-

nizations as knowledge hierarchies in which lower-level agents handle routine problems while

rare or complex cases are escalated to more knowledgeable specialists. Subsequent research

examines how communication technology and cognitive constraints shape optimal hierarchi-

cal depth and expertise specialization (Garicano and Rossi-Hansberg, 2006; Garicano and

Prat, 2011), as well as related models of problem routing and knowledge allocation (Beggs,

2001). In this literature, hierarchy governs the assignment and escalation of problems across

levels, whereas we study how hierarchy shapes the aggregation of many simultaneous assess-

ments into a single collective decision.

Our paper complements these literatures by studying hierarchy exclusively as a mecha-

nism for structuring information aggregation when individual expertise is heterogeneous and

imperfectly observed. We model formal titles as coarse summaries of noisy evaluations of

expertise and allow organizations to choose both how much information to generate about

expertise and how finely to translate that information into hierarchical categories. Unlike

existing work, hierarchy in our model does not govern reporting lines, delegation, incen-
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tives, or monitoring, and communication is costless conditional on titles. By endogenizing

the depth of hierarchy and the assignment of evaluations to titles, we characterize when

additional layers of hierarchy improve decision accuracy and when their marginal informa-

tional value is outweighed by organizational costs. This perspective highlights an additional

and distinct function of hierarchy—information filtering—that organizations must consider

alongside incentives, authority, and coordination when designing hierarchical structures.

The remainder of the paper is organized as follows. Section 2 presents the model: a

binary decision problem with heterogeneous and unobservable expertise, a noisy evalua-

tion technology, and the induced title structure. Section 3 analyzes decision-making under

a fixed evaluation-and-title system, characterizes the optimal title-based aggregation rule,

and derives a closed-form expression for the asymptotic error exponent that summarizes

decision performance. Section 4 studies the organization’s design problem, examining how

performance changes with evaluation intensity and hierarchy depth and characterizing op-

timal choices under cost constraints. Section 5 discusses the implications of the results for

organizational design and hierarchy. Section 6 concludes.

2 Model Setup

We develop a model of organizational decision-making under uncertainty in which an orga-

nization aggregates information from multiple agents whose expertise is heterogeneous and

not directly observable. Agents provide assessments that differ in reliability, and the organi-

zation uses observable titles—generated through imperfect evaluation—to structure decision

authority when forming a collective choice. The model specifies the state space, agents’

information, the evaluation and title-assignment process, and the aggregation rule used to

reach a decision.
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State and Decision

The organization faces a binary decision regarding a project or action. The underlying state

of the world is denoted by ω ∈ {−1, 1}, where the labels −1 and 1 are purely notational.

The organization holds a symmetric prior,

Pr(ω = 1) = Pr(ω = −1) =
1

2
,

so any improvement in decision quality must come from internal assessments.

After collecting assessments from its members, the organization chooses an action

d ∈ {−1, 1}.

The organization aims to match the realized state, and it does so through an internal decision

protocol that specifies how individual assessments are aggregated; this protocol is fixed ex

ante.

The organization’s payoff depends on whether the chosen action matches the state.

Specifically,

π(d, ω) =


1, if d = ω,

1− κ, if d ̸= ω,

where κ > 0 measures the loss from an incorrect decision.

To capture that decision stakes may rise with project scale and may vary across projects,

we let

κ = λn,

where n indexes the scale or complexity of the project and λ > 1 is a random variable

capturing the severity of losses conditional on failure. We assume that λ is drawn from

a uniform distribution on [1, 2], independently of all other primitives. The realization of

8



λ reflects project-specific factors (e.g., technological risk, regulatory exposure, or market

conditions) and is observed by the organization before the final action is taken.

Finally, the organization may choose not to proceed with a project when its expected

payoff is negative. Throughout, expected performance is evaluated relative to an outside

option normalized to zero.

Workers and Information

The organization relies on assessments produced by its members. There are n workers

indexed by i = 1, 2, . . . , n, each of whom generates a binary assessment relevant to the

decision. Workers differ in their expertise, which affects the reliability of the information

they produce.

Worker i has an ability level θi ∈ (1
2
, 1). Ability is not directly observable to the orga-

nization or to other workers. Conditional on the underlying state ω, worker i produces an

assessment si ∈ {−1, 1}, where

Pr(si = ω | ω, θi) = θi.

Each assessment is therefore informative about the underlying state, though its reliability

varies across workers.

Conditional on the state, the assessments {si}ni=1 are independent. Each assessment

represents primary information generated through task execution, analysis, or judgment,

rather than being filtered through organizational hierarchy. We abstract from incentive

provision and strategic communication in order to focus on how organizations aggregate

heterogeneous information when individual expertise is not directly observable.

The ability levels {θi}ni=1 are drawn independently from a common distribution F with

density f , supported on (1
2
, 1). The distribution F is known to the organization, but the

individual ability levels {θi}ni=1 are not observed.
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Evaluation and Titles

Before aggregating assessments, the organization may invest in evaluating workers’ expertise.

The evaluation technology is a test consisting ofm independent items. Conditional on ability

θi, worker i answers each item correctly with probability θi, independently across items. Let

Ji ∈ {0, 1, . . . ,m} denote worker i’s number of correct answers. Then

Ji ∼ Binomial(m, θi).

The organization observes Ji but not θi.

Based on the test score, the organization assigns each worker to one of L title categories.

An assignment rule is a deterministic map

r : {0, 1, . . . ,m} → {1, 2, . . . , L},

and worker i’s title is

Ki := r(Ji) ∈ {1, 2, . . . , L}.

Titles are publicly observable and are interpreted as coarse indicators of expected expertise.

The assignment rule induces, for each category k ∈ {1, . . . , L}, the population share pk,

the posterior density fk, and the corresponding mean ability ξk, defined by

pk := Pr(Ki = k), fk(θ) := f(θ | Ki = k), ξk := E[θi | Ki = k].

These category-level objects summarize how the evaluation and title system compresses

information about expertise.

Implementing the evaluation and title system entails organizational costs, summarized

by a cost function

C = C(m,L),
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which depends on the intensity of evaluation m and the number of title categories L. We

assume that the cost is weakly increasing in both arguments, so that Cm(·) ≥ 0 and CL(·) ≥ 0.

The cost reflects resources devoted to administering evaluations, processing information, and

maintaining a more differentiated title structure. No further structure is imposed in the

model setup.

Aggregation Rule

The organization aggregates the information generated by its members to form a collective

decision. Individual assessments provide noisy information about the underlying state, and

observable titles affect how these assessments are incorporated into the final choice.

Formally, the organization’s decision rule maps the profile of assessments into an action.

An aggregation rule is therefore written as

d = δ(s1, . . . , sn; K1, . . . , Kn),

where δ is a function from assessment profiles to a binary action, conditional on the realized

titles.

The aggregation rule captures how the organization combines information when forming

a collective decision. Titles enter as parameters that shape the relative influence of individual

assessments, while the assessments themselves are the primary carriers of information. The

characterization of optimal aggregation rules and the induced decision authority across titles

is developed in the analysis.

Organizational Design Problem

The organization chooses its internal decision structure to maximize expected performance

net of organizational costs. A design specifies how expertise is evaluated and incorporated

into collective decisions.
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Given a design (m,L, r, δ) and a realization of λ, the organization’s expected payoff

from undertaking the project is E[π(d, ω) | λ], where the expectation is taken over the

state, workers’ abilities, assessments, and induced titles. The organization may choose to

discontinue the project if its expected value is negative. As a result, the ex ante value of a

design is given by Eλ[max{E[π(d, ω) | λ], 0}].

The organizational design problem is

max
m,L,r,δ

Eλ

[
max

{
E[π(d, ω) | λ], 0

}]
− C(m,L).

The aggregation rule δ determines how individual assessments are combined given the re-

alized titles, while the evaluation and title system—summarized by the tuple (m,L, r)—governs

how much information about expertise is revealed and how it is coarse-grained into observable

ranks.

3 Analysis

This section analyzes the organization’s decision-making problem given an evaluation-and-

title system. We first characterize the aggregation rule that maximizes the probability of a

correct collective decision. We then derive a tractable measure of decision performance and

use it to study the organization’s choice of (m,L, r). Finally, we present benchmark cases

that bound achievable performance and discipline the design problem.

3.1 Optimal Aggregation Rule

Fix an evaluation-and-title system (m,L, r). The evaluation and title assignment induce

category shares {pk}Lk=1 and posterior mean abilities {ξk}Lk=1, where ξk = E[θi | Ki = k].

Conditional on the state, individual assessments are independent and satisfy

Pr(si = ω | ω,Ki = k) = ξk.
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Thus, conditional on titles, workers within the same category are observationally symmetric

from the organization’s perspective. The aggregation problem therefore reduces to choosing

a category-dependent influence weight for each assessment.

Among all decision rules that map (s1, . . . , sn;K1, . . . , Kn) into an action d ∈ {−1, 1},

an optimal rule takes a likelihood-ratio form.

Lemma 1 (Optimal title-based aggregation). To maximize the probability of a correct col-

lective decision, Pr(d = ω), an optimal aggregation rule is a weighted majority rule:

d = sgn

(
n∑

i=1

wKi
si

)
,

where the optimal weight for category k is the log-odds ratio

wk = log

(
ξk

1− ξk

)
.

When the weighted sum equals zero, the organization randomizes uniformly over {−1, 1}.

Lemma 1 is a standard likelihood-ratio aggregation result in weighted voting with het-

erogeneous reliabilities (see, e.g., Nitzan and Paroush, 1982; Shapley and Grofman, 1984).

Intuitively, the rule places more weight on titles associated with higher posterior reliability,

and the log-odds form is the natural weight under conditional independence.

Lemma 1 reduces the aggregation problem to the category objects induced by the eval-

uation and title system; in particular, the optimal weights depend on the title system only

through the posterior means {ξk}Lk=1. Equivalently, wk is the log-likelihood-ratio contribution

of a category-k assessment under conditional independence.

3.2 Decision Performance and Organizational Design

Applying the optimal aggregation rule in Lemma 1 yields a tractable representation of de-

cision performance. The key object is an error exponent that summarizes how quickly the
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probability of a wrong decision vanishes as the number of workers grows.

Fix (m,L, r) and consider the weighted majority rule in Lemma 1. Let

Pr
n
(m,L, r) := Pr(d ̸= ω | m,L, r)

denote the error probability with n workers under this rule, where the probability is taken

over (ω, {θi}ni=1, {Ji}ni=1, {Ki}ni=1, {si}ni=1).

Definition 1 (Error exponent). The (asymptotic) error exponent is

ϕ(m,L, r) := − lim
n→∞

1

n
log Pr

n
(m,L, r),

whenever the limit exists.

When the error exponent exists, the probability of a wrong decision satisfies

Pr
n
(m,L, r) = e−nϕ(m,L,r) as n → ∞.

A larger ϕ(m,L, r) corresponds to faster exponential decay of the error probability as

team size increases. Under the optimal title-based weights, ϕ(m,L, r) admits a closed-form

expression in terms of the category objects (pk, ξk)
L
k=1 induced by the evaluation and title

system.

Proposition 1 (Error exponent under optimal title-based weights). Under the weighted

majority rule in Lemma 1, the error exponent satisfies

ϕ(m,L, r) = − log

[
L∑

k=1

2pk

√
ξk
(
1− ξk

)]
.

Proposition 1 implies that, for a fixed evaluation-and-title system, decision performance

depends on (m,L, r) only through the induced category objects (pk, ξk)
L
k=1.
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We now express the organization’s design objective in terms of ϕ(m,L, r). Recall that the

loss from an incorrect decision is κ = λn, where λ is drawn uniformly from [1, 2] and observed

by the organization before choosing the action. Under the weighted rule, the organization’s

expected payoff conditional on λ is

E[π(d, ω) | λ] = 1− λn Pr
n
(m,L, r).

Using Proposition 1, this becomes

E[π(d, ω) | λ] = 1− λne−nϕ(m,L,r).

As n → ∞, the sign of log λ − ϕ(m,L, r) determines whether the project has positive

value. With the outside option normalized to zero, the organization proceeds if and only if

λ ≤ eϕ(m,L,r). Therefore, the ex ante value of design (m,L, r) is

Eλ[max {E[π(d, ω) | λ], 0}] = eϕ(m,L,r) − 1,

for ϕ(m,L, r) ∈ (0, log 2), since λ ∼ U [1, 2] and for eϕ ∈ (1, 2), the probability is eϕ − 1.

The organizational design problem therefore reduces to choosing (m,L, r) to maximize

performance net of organizational costs:

max
m,L,r

eϕ(m,L,r) − 1− C(m,L).

3.3 Benchmarks

Benchmarks discipline the organizational design problem by providing bounds on achievable

performance and clarifying the role of evaluation and hierarchy in the model.
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First-best benchmark. Suppose individual expertise θi is publicly observed and can be

used directly in aggregation, so that no evaluation or title system is required and no or-

ganizational cost is incurred. In this case, the organization assigns each assessment the

weight

wi = log

(
θi

1− θi

)
,

and aggregates assessments using the corresponding likelihood-ratio rule. Since abilities are

observed, the aggregation rule fully exploits all available information.

Let ϕFB denote the resulting error exponent. By the law of large numbers and standard

large-deviation arguments, the error exponent satisfies

ϕFB = − log

[∫ 1

1/2

4
√

θ(1− θ) dF (θ)

]
,

where F is the cross-sectional distribution of expertise. The associated value is

UFB = eϕ
FB − 1 =

[∫ 1

1/2

4
√
θ(1− θ) dθ

]−1

− 1 =
4

π
− 1 ≈ 0.273.

This benchmark represents the maximal performance attainable in the model, since any

feasible design must rely on imperfect information about individual expertise.

No-evaluation benchmark. At the opposite extreme, consider a design with no eval-

uation and a single title category (m = 0, L = 1). In this case, all workers are treated

symmetrically and receive the same aggregation weight. The induced posterior mean ability

is ξ = E[θi], and the error exponent reduces to

ϕNE = − log
[
2
√

ξ(1− ξ)
]
.
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When θi ∼ U [1/2, 1], the mean ability is ξ = 3/4, so the corresponding value is

UNE =
[
2
√

ξ(1− ξ)
]−1

− 1 =

[
2
√

3
16

]−1

− 1 =

[
2 ·

√
3

4

]−1

− 1 =
2√
3
− 1 ≈ 0.155.

This benchmark captures decision-making without internal differentiation of expertise and

serves as a lower bound on performance when evaluation and hierarchy are absent.

Together, these benchmarks delimit the scope for organizational design. Evaluation and

hierarchy improve performance by moving the organization away from the no-evaluation

benchmark toward the first-best bound, but cannot surpass the latter. The design problem

studied in this paper concerns how much of this gap can be closed, and at what organizational

cost.

4 Results

This section presents the main results of the analysis. We examine how decision perfor-

mance varies with the organization’s design choices and report the implications of changes

in evaluation intensity and hierarchical structure. The section combines analytical charac-

terizations with numerical illustrations to describe how performance responds to different

designs (m,L, r).

4.1 Performance Without Organizational Costs

We begin by examining organizational performance in the absence of organizational costs,

so that C(m,L) = 0. This benchmark isolates the informational value of evaluation and

hierarchy and clarifies the shape of the performance function before introducing tradeoffs.

Figure 1 plots performance as a function of hierarchy depth L holding evaluation intensity

fixed at m = 300. Increasing the number of title categories substantially improves perfor-

mance at low levels of hierarchy, but the gains flatten quickly. Beyond a modest number of
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Figure 1: Organizational performance as a function of hierarchy depth L for fixed evaluation
intensity m = 300.

levels, additional differentiation yields only marginal improvements. Performance converges

to an upper bound corresponding to the first-best benchmark derived in Section 3.3.

Figure 2 shows performance as evaluation intensity increases when the number of title

categories grows with the number of tests according to L = m + 1. Performance rises

rapidly at low levels of testing and then exhibits pronounced concavity, approaching the

same upper bound. This case represents an extreme form of organizational differentiation in

which increasingly fine evaluations are translated into correspondingly fine title distinctions.

To disentangle the roles of evaluation and hierarchy, Figure 3 plots performance as a

function of evaluation intensity m for fixed hierarchy depths L ∈ {5, 10, 50}. Across all

cases, performance is increasing and concave in m, with diminishing marginal gains from

additional testing. Holding L fixed limits the maximal attainable performance, but even

coarse hierarchies capture a substantial fraction of the available gains once evaluation is

sufficiently informative.

Taken together, these results highlight two robust patterns. First, both evaluation in-
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Figure 2: Organizational performance as evaluation intensity m increases when hierarchy
depth grows according to L = m+ 1.

(a) L = 5 (b) L = 10 (c) L = 50

Figure 3: Organizational performance as a function of evaluation intensity m for fixed hier-
archy depths L ∈ {5, 10, 50}.

tensity and hierarchy depth improve decision performance by sharpening the allocation of

decision authority toward more reliable contributors. Second, the informational returns to

both dimensions are strongly diminishing, and performance converges rapidly toward its

upper bound. These features foreshadow the emergence of finite optimal designs once orga-

nizational costs are introduced.
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(a) L = 5 (b) L = m+ 1 (c) L = 10

Figure 4: Optimal evaluation intensity m∗ as a function of the marginal testing cost α under
linear evaluation costs.

4.2 Optimal Evaluation Intensity

We now introduce organizational costs and study how they shape the optimal amount of

evaluation. Throughout this subsection, the cost of evaluation is linear in the number of

tests,

C(m,L) = αm,

where α > 0 measures the marginal cost of administering an additional test. For each value

of α, the organization chooses m to maximize

U(m,L) = eϕ(m,L) − 1− αm,

taking the hierarchy depth L as given. For each (m,L), the assignment rule r is optimized.

Figure 4 plots the optimal number of testsm∗ as a function of α under three organizational

environments. The left panel fixes hierarchy depth at L = 5, the middle panel considers the

case in which hierarchy expands with evaluation according to L = m+1, and the right panel

fixes hierarchy depth at L = 10.

Across all cases, the optimal evaluation intensity is decreasing in the marginal cost α.

When testing is inexpensive, the organization invests heavily in evaluation to improve the
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allocation of decision authority across titles. As α increases, the marginal informational

benefit of additional testing is outweighed by its direct cost, leading to discrete reductions

in m∗. These stepwise patterns reflect both the integer nature of the design problem and

the diminishing returns to evaluation documented in Section 4.1.

4.3 Optimal Hierarchy Depth

We next examine how the optimal depth of hierarchy responds to organizational costs. In

this subsection, the cost function takes the form

C(m,L) = βL,

where β > 0 captures the marginal cost of maintaining an additional hierarchical level.

Evaluation intensity m is fixed, and for each (β,m) the organization chooses the hierarchy

depth L to maximize

U(m,L) = eϕ(m,L) − 1− βL,

with the assignment rule r optimized for each (m,L).

Figure 5 plots the optimal hierarchy depth L∗ as a function of β for different fixed values

of evaluation intensity m. Across all cases, the optimal hierarchy depth declines sharply

as the marginal cost of hierarchy increases. When β is small, the organization adopts a

relatively deep hierarchy in order to exploit fine distinctions in expected expertise. As β

rises, the informational gains from additional levels are quickly dominated by organizational

costs, leading to discrete reductions in L∗.

Two patterns are worth emphasizing. First, the optimal hierarchy depth is highly sen-

sitive to even modest increases in β: most of the reduction in L∗ occurs at low values of

the marginal cost. Second, higher evaluation intensity supports deeper hierarchies, but only

when the cost of hierarchy is sufficiently low. Once β exceeds a moderate threshold, the

optimal structure collapses to a shallow hierarchy regardless of how informative evaluation
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(a) m = 200 (b) m = 300 (c) m = 500

Figure 5: Optimal hierarchy depth L∗ as a function of the marginal hierarchy cost β, for
selected values of evaluation intensity m.

is.

Together, these results highlight that hierarchy depth is the most fragile dimension of

organizational design. While evaluation intensity can be adjusted smoothly in response to

costs, the optimal number of hierarchical levels responds discretely and declines rapidly as

coordination and communication costs increase.

4.4 Structure of the Optimal Assignment Rule

We focus on coarser hierarchies that are empirically more relevant and visually informative.

The figures below display the aggregated assignment rules for L = 5, L = 10, and L = 20,

holding evaluation intensity fixed at m = 300.

Figure 6 shows that, for L = 5, L = 10, and L = 20, the optimal assignment rule groups

wide ranges of test outcomes into a small number of title categories. Lower titles pool a large

mass of relatively uninformative evaluations, while higher titles are reserved for increasingly

extreme test outcomes. As L increases, the partition becomes progressively finer, but the

additional cuts occur primarily in the upper tail of the evaluation distribution.

Two patterns emerge. First, optimal assignment rules are monotone in evaluation out-

comes: higher test scores are always mapped to weakly higher titles. Second, hierarchy depth

primarily affects how finely the upper tail of the evaluation distribution is separated. Addi-
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(a) L = 5 (b) L = 10 (c) L = 20

Figure 6: Aggregated assignment rules for m = 300 under different hierarchy depths.

tional title categories are used to refine distinctions among high-performing workers, while

lower-performing workers remain pooled into broad categories. This reflects diminishing re-

turns to differentiation at low levels of expected expertise, where additional information has

little effect on decision quality.

Overall, these results confirm that the role of the assignment rule is largely supportive.

Once the aggregation rule is optimally chosen, the main determinants of performance are

evaluation intensity and hierarchy depth. The precise shape of the assignment rule matters

primarily insofar as it governs how finely high levels of expertise are distinguished, which

explains why changes in r have smaller quantitative effects than changes in m or L.

5 Discussion

This paper studies hierarchy as a mechanism for allocating decision authority when individual

expertise is heterogeneous and imperfectly observed. Titles summarize noisy evaluations of

expertise and determine how individual assessments are weighted in collective decisions.

The analysis highlights how organizational performance depends on three design choices:

evaluation intensity, hierarchy depth, and the assignment of evaluations to titles.

A central finding is that both evaluation and hierarchy improve decision quality, but with

strongly diminishing returns. More intensive evaluation sharpens posterior beliefs about ex-

pertise, while additional title categories allow the organization to translate these beliefs into

finer distinctions in decision authority. However, once the most informative distinctions

are already captured, further refinement yields little additional benefit. As a result, perfor-
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mance converges quickly toward an upper bound well below the first-best benchmark. This

explains why relatively simple organizational structures can perform nearly as well as much

more complex ones.

The results also reveal an important asymmetry between evaluation intensity and hier-

archy depth. Evaluation can be adjusted relatively smoothly in response to costs, whereas

hierarchy depth responds discretely. Small increases in the marginal cost of hierarchy lead to

sharp reductions in the optimal number of title categories. This reflects the fact that hierar-

chy primarily refines distinctions among high-expertise workers: when hierarchy is costly, the

organization optimally collapses many intermediate ranks while preserving a small number

of top positions. In this sense, hierarchy depth is the most fragile dimension of organizational

design.

The analysis further clarifies the role of the assignment rule. While the optimal rule is

monotone and respects evaluation rankings, its detailed shape plays a secondary role once

aggregation weights are optimally chosen. Changes in performance are driven mainly by

how many distinctions the organization makes, not by the exact placement of thresholds.

This helps explain why the numerical structure of assignment rules varies across environ-

ments without substantially affecting performance. From a design perspective, this suggests

that organizations can rely on relatively simple and robust assignment procedures without

sacrificing much efficiency.

Several limitations of the analysis point to directions for future work. First, the model

is static and abstracts from learning and promotion over time. In practice, titles evolve as

workers accumulate performance histories, and hierarchical structures may serve additional

incentive or career concerns. Second, the evaluation technology is stylized as a sequence of

independent Bernoulli tests. Other screening mechanisms—such as peer evaluation, project

outcomes, or task-specific signals—may interact differently with hierarchy. Finally, the model

treats communication costs in reduced form through the cost of hierarchy, rather than mod-

eling explicit information loss across layers.
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Despite these simplifications, the framework captures a fundamental tradeoff in organiza-

tional design. Hierarchy improves decision-making by concentrating authority among more

reliable contributors, but only up to the point where organizational costs outweigh infor-

mational gains. The results provide a rationale for why many organizations adopt shallow

hierarchies with limited differentiation, and why attempts to excessively refine internal rank

structures often yield little improvement in decision quality.

6 Conclusion

This paper studies how organizations should design internal hierarchies when individual ex-

pertise is heterogeneous, imperfectly observed, and must be aggregated into a collective deci-

sion. Titles arise as a coarse summary of noisy evaluations of expertise and serve to allocate

decision authority among contributors. By embedding hierarchy into a formal information-

aggregation framework, the analysis clarifies how evaluation, rank differentiation, and col-

lective decision-making interact.

The model delivers three main insights. First, both evaluation intensity and hierarchy

depth improve decision accuracy by concentrating influence on more reliable contributors,

but the gains exhibit strong diminishing returns. As a result, relatively simple organizational

structures capture most of the achievable improvements in decision quality. Second, hierarchy

depth responds sharply to organizational costs. Even modest increases in the marginal cost

of hierarchy lead to substantial reductions in the optimal number of title categories, whereas

evaluation intensity adjusts more smoothly. This makes hierarchy depth the most fragile

dimension of organizational design. Third, while the optimal assignment of evaluations to

titles is monotone and intuitive, its detailed shape plays a secondary role once aggregation

weights are optimally chosen. Performance is driven primarily by how many distinctions the

organization makes, rather than by the precise placement of thresholds.

Together, these results provide a disciplined explanation for why many organizations
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rely on shallow hierarchies with limited rank differentiation, even when decision-making

is complex and expertise is unevenly distributed. Hierarchy improves decision quality by

filtering noise and concentrating authority, but only up to the point where organizational

costs outweigh informational gains. Beyond that point, additional layers contribute little

and may be counterproductive.

More broadly, the framework highlights the informational role of hierarchy distinct from

its incentive or control functions. By viewing titles as a mechanism for compressing in-

formation about expertise and structuring influence, the analysis offers a new perspective

on organizational design in environments where direct knowledge of ability is limited and

collaboration is transient.
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A Proofs

Proof of Proposition 1. From the main text, we know that ϕ(m,L, r) under a fixed evaluation-

and-title system is

ϕ(m,L, r) = − lim
n→∞

1

n
log Pr

n
(m,L, r) where Pr

n
(m,L, r) = Pr(d ̸= ω | m,L, r).

The key is to pin down Pr(d ̸= ω | m,L, r) under the weighted majority rule stated in Lemma

1. Recall that for each category k ∈ {1, . . . , L}, the population share pk, the posterior density

fk, and the corresponding mean ability ξk, defined by

pk = Pr(Ki = k), fk(θ) = f(θ | Ki = k), ξk = E[θi | Ki = k].

Without loss of generality, we assume that ω = 1 and ξ1 < ξ2 < ... < ξL. Now denote

wk = log ξk
1−ξk

, and Xi as the random variable of the weighted vote of agent i, where

Xi =

 wKi
si = 1

−wKi
si = −1

.

We can further write Xi as

Xi =



w1 with probability p1ξ1

−w1 with probability p1(1− ξ1)

w2 with probability p2ξ2

−w2 with probability p2(1− ξ2)

... ...

wL with probability pLξL

−wL with probability pL(1− ξL)

.

Let Sn = X1 + X2 + ... + Xn, then the decision is d = 1 if Sn > 0, d = −1 if Sn < 0, and
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random when Sn = 0. Now by the weighted majority rule stated in Lemma 1, we know that

Pr(d ̸= ω) = Pr(Sn < 0) +
1

2
Pr(Sn = 0).

As we will show in the later proof, lim
n→∞

1

n
log Pr(Sn < 0) = lim

n→∞

1

n
log Pr(Sn ≤ 0). Thus, we

can conclude that

ϕ(m,L, r) = − lim
n→∞

1

n
log Pr(Sn < 0).

Moment generating function

Calculate the moment generating function:

M(t) = E[etX ] =
L∑

k=1

pk
(
ξke

wkt + (1− ξk)e
−wkt

)
.

Lemma 2. M(t) is strictly convex, and so is logM(t).

Proof. Taking derivatives, we obtain

M ′(t) =
L∑

k=1

pkwk

(
ξke

wkt − (1− ξk)e
−wkt

)
,

M ′′(t) =
L∑

k=1

pkw
2
k

(
ξke

wkt + (1− ξk)e
−wkt

)
> 0.

Thus M(t) is strictly convex. Moreover,

d logM(t)

dt
=

M ′(t)

M(t)
,

d2 logM(t)

dt2
=

M ′′(t)M(t)− (M ′(t))2

(M(t))2
.

Let

ak =

√
pk

(
ξkewkt + (1− ξk)e−wkt

)
, bk = wkak.
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By the Cauchy–Schwarz inequality,

M ′′(t)M(t) =
( L∑

k=1

a2k

)( L∑
k=1

b2k

)
≥
( L∑

k=1

akbk

)2
.

We also have

( L∑
k=1

akbk

)2
=
( L∑

k=1

pkwk

(
ξke

wkt+(1−ξk)e
−wkt

))2
>
( L∑

k=1

pkwk

(
ξke

wkt−(1−ξk)e
−wkt

))2
= (M ′(t))2.

Therefore,

d2 logM(t)

dt2
=

M ′′(t)M(t)− (M ′(t))2

(M(t))2
> 0,

so logM(t) is strictly convex. Q.E.D.

Lemma 3. The range of d logM(t)
dt

= M ′(t)
M(t)

is (−wL, wL).

Proof. We have already established that d2 logM(t)
dt2

> 0, so M ′(t)
M(t)

is strictly increasing in t.

Moreover,

lim
t→−∞

M ′(t)

M(t)
= lim

t→−∞

∑L
k=1 pkwk

(
ξke

wkt − (1− ξk)e
−wkt

)∑L
k=1 pk

(
ξkewkt + (1− ξk)e−wkt

) = −wL,

and

lim
t→∞

M ′(t)

M(t)
= lim

t→∞

∑L
k=1 pkwk

(
ξke

wkt − (1− ξk)e
−wkt

)∑L
k=1 pk

(
ξkewkt + (1− ξk)e−wkt

) = wL.

Therefore, the range of M ′(t)
M(t)

is (−wL, wL). Q.E.D.

Rate function

Denote the rate function as

I(x) := sup
t∈R

tx− logM(t).
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Now let

g(x, t) = tx− logM(t) = tx− log

[
L∑

k=1

pk

(
ξke

wkt + (1− ξk)e
−wkt

)]
,

then I(x) = supt∈R g(x, t).

When x < −wL, we have g(x, t) → ∞ as t → −∞, so I(x) = ∞.

When x > wL, we have g(x, t) → ∞ as t → ∞, so I(x) = ∞.

When x = −wL,

eg(x,t) =
e−wLt∑L

k=1 pk
(
ξkewkt + (1− ξk)e−wkt

)
=

1

pLξLe2wLt + pL(1− ξL) +
∑L−1

k=1 pk
(
ξke(wk+wL)t + (1− ξk)e(wL−wk)t

) .
Thus, eg(x,t) is decreasing in t, so the supremum is attained as t → −∞, and

I(−wL) = − log
(
pL(1− ξL)

)
.

When x = wL,

eg(x,t) =
ewLt∑L

k=1 pk
(
ξkewkt + (1− ξk)e−wkt

)
=

1

pLξL + pL(1− ξL)e−2wLt +
∑L−1

k=1 pk
(
ξke−(wL−wk)t + (1− ξk)e−(wL+wk)t

) .
Thus, eg(x,t) is increasing in t, so the supremum is attained as t → ∞, and

I(wL) = − log
(
pLξL

)
.
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When x ∈ (−wL, wL), since g(x, t) is concave in t, the supremum is attained at t∗ satisfying

∂g(x, t)

∂t
= x− M ′(t)

M(t)
= 0.

Since M ′(t)
M(t)

is strictly increasing in t, there is a unique solution t∗. Thus, the rate function is

I(x) =



xt∗ − logM(t∗) x ∈ (−wL, wL),

− log
(
pL(1− ξL)

)
x = −wL,

− log
(
pLξL

)
x = wL,

∞ x /∈ [−wL, wL].

Lemma 4. t∗ is continuous and increasing in x.

Proof. t∗(x) is solution to x = M ′(t)
M(t)

. M ′(t)
M(t)

is continuous and strictly increasing in t, and the

range is (−wL, wL). So for each x ∈ (−wL, wL), there is a unique t∗ ∈ R such that x = M ′(t∗)
M(t∗)

.

Also, limt→−∞
M ′(t)
M(t)

= −wm, limt→∞
M ′(t)
M(t)

= wm. Thus, t
∗ → −∞ as x → −wm, and t∗ → ∞

as x → wm.

By implicit function theorem, we have

dt∗

dx
=

1
∂2g(x,t)

∂t2

=
1

−M ′′(t)M(t)−(M ′(t))2

(M(t))2

> 0.

So t∗ is increasing in x. Q.E.D.

Lemma 5. I(x) is well-defined and continuous in x on [−wL, wL].

Proof. When x ∈ (−wL, wL), I(x) is well-defined since t∗ is unique. Also, I(x) is well-defined

when x = −wL and x = wL. Thus I(x) is well-defined.

When x ∈ (−wL, wL), we have t∗ satisfies x = M ′(t∗)
M(t∗)

. Since t∗ is a unique map between x
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and t∗, we can write I(x) as:

I(
M ′(t)

M(t)
) = t · M

′(t)

M(t)
− logM(t).

SinceM ′(t) andM(t) are continuous in t, I(M
′(t)

M(t)
) is continuous in t. Thus, I(x) is continuous

on (−wL, wL).

Let t → −∞,

lim
x→−w+

L

eI(x) = lim
t→−∞

et·
M′(t)
M(t)

−logM(t)

= lim
t→−∞

et·
M′(t)
M(t)

M(t)

= lim
t→−∞

et·
M′(t)
M(t)∑L

k=1 pk(ξke
wkt + (1− ξk)e−wkt)

= lim
t→−∞

1∑L
k=1 pk(ξke

(wk−M′(t)
M(t)

)t + (1− ξk)e
(−wk−M′(t)

M(t)
)t)

Since lim
t→−∞

M ′(t)
M(t)

= −wL, so for an w∗ ∈ (−wL,−wL−1), there is a t such that when t < t,

M ′(t)
M(t)

∈ (−wL, w
∗).

Thus, we have

0 ≤ lim
t→−∞

e(−wk−M′(t)
M(t)

)t ≤ lim
t→−∞

e(−wk−w∗)t = 0, k = 1, 2, ...,m− 1.

Similarly,

0 ≤ lim
t→−∞

e(wk−M′(t)
M(t)

)t ≤ lim
t→−∞

e(wk−w∗)t = 0, k = 1, 2, ...,m.

Thus, we have:

lim
x→−w+

L

eI(x) = lim
t→−∞

1

pL(1− ξL)e
(−wL−M′(t)

M(t)
)t
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The key is the term (−wL − M ′(t)
M(t)

)t.

lim
t→−∞

(−wL − M ′(t)

M(t)
)t = lim

t→−∞


L∑

k=1

pkwk((1− ξk)e
−wkt − ξke

wkt)

L∑
k=1

pk(ξkewkt + (1− ξk)e−wkt)

− wL

 t

= lim
t→−∞


L∑

k=1

pkwk((1− ξk)e
(wL−wk)t − ξke

(wL+wk)t)

L∑
k=1

pk(ξke(wL+wk)t + (1− ξk)e(wL−wk)t)

− wL

 t

= lim
t→−∞


L−1∑
k=1

pk(wk − wL)(1− ξk)e
(wL−wk)t +

L∑
k=1

pk(wk + wL)ξke
(wL+wk)t

L∑
k=1

pk(ξke(wL+wk)t + (1− ξk)e(wL−wk)t)

 t

= lim
t→−∞

L−1∑
k=1

pk(wk − wL)(1− ξk)te
(wL−wk)t +

L∑
k=1

pk(wk + wL)ξkte
(wL+wk)t

L∑
k=1

pk(ξke(wL+wk)t + (1− ξk)e(wL−wk)t)

All terms except (1− ξL)e
(wL−wL)t will go to zero as t → −∞. Thus,

lim
t→−∞

(
−wL − M ′(t)

M(t)

)
t = 0.

Thus, we have:

lim
x→−w+

L

eI(x) =
1

pL(1− ξL)
.

I(x) is continuous at −wL. Similarly, we can prove that I(x) is continuous at wL. Thus,

I(x) is continuous on [−wL, wL]. Q.E.D.

Lemma 6. Let x0 =
∑L

k=1 pkwk(2ξk − 1)). When x < x0, I is decreasing; when x > x0, I is

increasing. I achieve its minimum at x0.

Proof. As before, we can write I(x) as:

I(x) = g(x, t∗(x)).
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By envelope theorem, we can get:

I ′(x) = gx(x, t
∗(x)) = t∗(x)

Since t∗(x) is strictly increasing in x, we need to find the point where t∗ = 0. When t∗ = 0,

we have:

x0 =
M ′(0)

M(0)
=

∑L
k=1 pkwk(ξk − (1− ξk))∑L
k=1 pkwk(ξk + 1− ξk)

=
L∑

k=1

pkwk(2ξk − 1)

Thus, when x < x0, I ′(x) = t∗(x) < 0, so I is decreasing; when x > x0, I ′(x) = t∗(x) > 0, so

I is increasing. Since I is continuous, I achieve its minimum at x0. Q.E.D.

Applying Cramér’s theorem

Cramer’s theorem says that Sn

n
satisfies a large deviation principle with rate function I(x).

Now we know I(x) is decreasing when x < x0, and x0 =
∑m

j=1 pjwj(2ξj − 1)) > 0. Thus,

inf
x<0

I(x) = inf
x≤0

I(x) = I(0).

If we have the optimal aggregation rule where the weights are wj = log
ξj

1−ξj
, when x = 0,

t∗(0) = −1
2
. This can be verified by:

M ′(−1

2
) =

m∑
j=1

pjwj(ξje
wj(− 1

2
) − (1− ξj)e

−wj(− 1
2
))

=
m∑
j=1

pjwj[ξj

(
ξj

1− ξj

)− 1
2

− (1− ξj)

(
1− ξj
ξj

)− 1
2

]

=
m∑
j=1

pjwj(
√
ξj(1− ξj)−

√
ξj(1− ξj)) = 0
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Thus

I(0) = −1
2
· 0− logM(−1

2
)

= − log
m∑
j=1

pj(ξe
wj(− 1

2
) + (1− ξj)e

−wj(− 1
2
))

= − log
m∑
j=1

pj[ξj

(
ξj

1− ξj

)− 1
2

+ (1− ξj)

(
1− ξj
ξj

)− 1
2

]

= − log

[
m∑
j=1

2pj

√
ξj(1− ξj)

]

By Cramer’s theorem, we have

lim
n→∞

1

n
log Pr(Sn < 0) = lim

n→∞

1

n
log Pr(Sn ≤ 0) = log

[
m∑
j=1

2pj

√
ξj(1− ξj)

]

Now we know that I(x) is decreasing when x < x0, and

x0 =
L∑

k=1

pkwk(2ξk − 1) > 0.

Thus,

inf
x<0

I(x) = inf
x≤0

I(x) = I(0).

Under the optimal aggregation rule with weights wk = log
(

ξk
1−ξk

)
, we have t∗(0) = −1

2
. This

can be verified by

M ′(−1
2

)
=

L∑
k=1

pkwk

(
ξke

wk(−
1
2
) − (1− ξk)e

−wk(−
1
2
)
)

=
L∑

k=1

pkwk

ξk ( ξk
1− ξk

)−1
2

− (1− ξk)

(
1− ξk
ξk

)−1
2


=

L∑
k=1

pkwk

(√
ξk(1− ξk)−

√
ξk(1− ξk)

)
= 0.
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Therefore,

I(0) = −1
2
· 0− logM

(
−1

2

)
= − log

L∑
k=1

pk

(
ξke

wk(−
1
2
) + (1− ξk)e

−wk(−
1
2
)
)

= − log
L∑

k=1

pk

ξk ( ξk
1− ξk

)−1
2

+ (1− ξk)

(
1− ξk
ξk

)−1
2


= − log

[
L∑

k=1

2pk
√

ξk(1− ξk)

]
.

By Cramér’s theorem,

lim
n→∞

1

n
log Pr(Sn < 0) = lim

n→∞

1

n
log Pr(Sn ≤ 0) = log

[
L∑

k=1

2pk
√

ξk(1− ξk)

]
.

Thus, we conclude that

ϕ = − log

[
L∑

k=1

2pk
√

ξk(1− ξk)

]
.

Q.E.D.
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