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Abstract

Organizations frequently rely on formal titles to structure influence in collective
decision-making, especially when individual expertise is heterogeneous and difficult to
observe directly. This paper studies how hierarchical titles can be designed to improve
decision quality by shaping whose judgments carry greater authority. We show that ti-
tles act as an informational device: by summarizing imperfect evaluations of expertise,
they allow organizations to concentrate decision authority on more reliable contribu-
tors, providing a rationale for the empirical correlation between higher rank and greater
influence in decision-making. The analysis reveals a fundamental tradeoff in organiza-
tional design. While more intensive evaluation and finer rank differentiation improve
decision accuracy, the informational gains from both dimensions exhibit sharply di-
minishing returns. As a result, when maintaining evaluations and hierarchy is costly,
optimal organizations adopt finite screening and shallow hierarchies, with relatively

simple title structures capturing most of the benefits of information aggregation.

Key words: Organizational design, Hierarchy depth, Information aggregation, Decision
authority, Expertise, weighted majority
JEL codes: D23, D83, D71



1 Introduction

Modern organizations increasingly make important decisions in teams whose members have
limited firsthand knowledge of one another’s expertise. Employee—employer relationships
are often short-lived—average job tenure in the U.S. private sector is under four years (U.S.
Bureau of Labor Statistics, 2024)—and many firms rely on decentralized and team-based
forms of collaboration that draw on specialized knowledge from different units (Bloom and
Van Reenen, 2010; Bloom, Sadun, and Van Reenen, 2012b). At the same time, organizations
frequently adjust their internal hierarchical structures and reporting relationships in response
to technological change, market conditions, and competitive pressures, including changes in
spans of control and the number of managerial layers (Rajan and Wulf, 2006; Bloom, Sadun,
and Reenen, 2012a). Together, these features limit opportunities for long-term learning
about coworkers’ capabilities and make it common for individuals to collaborate with col-
leagues they have not worked with before.

Decision-making in such environments is particularly challenging. When collaborators
lack reliable, experience-based information about one another’s competence, they cannot
easily assess whose judgments are more informative. Yet many organizational decisions are
complex and high-stakes, so treating all opinions as equally reliable is rarely optimal. As a
result, organizations face a fundamental design problem: how to structure influence within
teams when expertise is heterogeneous but not directly observable.

In the absence of direct knowledge of expertise, organizations rely on institutional sub-
stitutes to guide collective decision-making. Formal titles—such as manager, director, or
vice president—are especially prominent because they are publicly observable and organiza-
tionally endorsed. Although titles also govern reporting relationships and career incentives,
they can be viewed as coarse summaries of prior evaluations of performance and ability.
In practice, titles shape how information is aggregated: teams rarely treat all contributions
symmetrically, and higher-ranked individuals tend to receive greater influence when opinions

conflict or evidence is noisy. This creates an implicit aggregation rule in which rank deter-



mines decision authority, raising a natural design question: how finely should organizations
differentiate titles, and how much information should they invest in doing so, in order to
improve decision quality without incurring unnecessary organizational cost.

The study of hierarchy has deep roots in organizational economics. Early work empha-
sizes hierarchy as a response to bounded rationality and coordination constraints, allowing
complex decision problems to be structured across organizational levels (Simon, 1947). Sub-
sequent formal models characterize hierarchy as an information-processing architecture that
economizes on communication and coordination costs in large organizations (Radner, 1993).
More recent work focuses on three related roles of hierarchy: as a mechanism for allocating
authority under communication frictions (Garicano and Prat, 2011), as an organizational re-
sponse to incentive and monitoring problems (Garicano and Rossi-Hansberg, 2006), and as
a determinant of managerial structure and spans of control in response to technological and
competitive forces (Rajan and Wulf, 2006; Bloom et al., 2012a). Across these contributions,
hierarchy serves a variety of organizational functions, but its role as a device for structuring
information aggregation remains comparatively underexplored.

As a result, there is limited guidance on how the depth and granularity of hierarchy
should be designed when titles primarily act as signals of expertise. Existing work provides
little insight into how finely organizations should differentiate ranks, or how the informa-
tional gains from more detailed evaluations trade off against the organizational costs of
maintaining a more complex hierarchy. When titles summarize imperfect assessments of
ability, additional hierarchical layers can sharpen distinctions in expected expertise and im-
prove decision quality, but they may also increase administrative burden and organizational
complexity. Understanding this tradeoff requires treating hierarchy depth and evaluation
intensity as explicit design choices in an information aggregation problem.

This paper studies a collective decision-making environment in which an organization
aggregates assessments from a large number of individuals whose expertise is heterogeneous

and not directly observable. Individuals observe noisy signals about a common underlying



state, and the organization can invest in evaluations—such as tests, performance reviews, or
certifications—that imperfectly reveal individual expertise. Evaluation outcomes are sum-
marized by a finite set of observable titles, which serve as coarse indicators of expected
expertise. Titles play no role in incentives, reporting lines, or communication; instead, they
affect decisions only by shaping how individual assessments are weighted in the collective
choice.

Building on standard results in the information aggregation literature (Nitzan and Paroush,
1982; Shapley and Grofman, 1984), we take the aggregation rule as given and focus on the
organizational design problem. Using this framework, we study how decision accuracy re-
sponds to two design margins: the intensity of evaluation, which governs how informative
titles are about expertise, and the depth of hierarchy, which determines how finely evaluation
outcomes are translated into rank categories. We show that both margins improve decision
quality by concentrating influence on more reliable individuals, but that their informational
benefits exhibit sharply diminishing returns. Consequently, the optimal organizational de-
sign features a finite level of screening and a finite depth of hierarchy: relatively simple title
structures capture most of the attainable gains from information aggregation, while further

differentiation adds complexity with little additional benefit.

Related literature: This paper contributes to a large literature on organizational hierar-
chy by isolating and formalizing one specific function of hierarchical structure: its role in ag-
gregating dispersed information when individual expertise is heterogeneous and imperfectly
observed. A broad range of existing work studies hierarchy through other lenses, including
bounded rationality, incentives and monitoring, authority allocation, communication, and
problem solving. While these contributions provide deep insights into why hierarchies arise
and how they shape organizational behavior, they typically abstract from the informational
design problem that is central to our analysis.

As mentioned earlier, the study of hierarchy has deep roots in organizational economics.



Early work emphasizes hierarchy as an efficient response to bounded rationality and co-
ordination constraints in complex organizations. Simon (1947) argues that hierarchical
decomposition allows organizations to cope with cognitive limits by structuring complex
decisions across multiple levels. Radner (1993) formalizes this perspective by modeling hi-
erarchy as an information-processing architecture that economizes on communication and
coordination costs in large organizations, with related contributions emphasizing the role of
hierarchy in managing complexity and coordinating large systems (Marschak and Radner,
1972; Van Zandt, 1997). In this foundational literature, hierarchical structure is typically
treated as an organizational primitive: the depth and granularity of hierarchy are taken as
given, rather than as design variables chosen to improve decision accuracy.

A large body of work studies hierarchy as a mechanism for allocating authority, providing
incentives, and mitigating monitoring problems within organizations. Classic models analyze
how layered hierarchical structures address moral hazard, free riding, and effort provision in
teams (Holmstrom, 1982; Mookherjee, 1984; McAfee and McMillan, 1991), while subsequent
contributions examine how authority, ownership, and control interact with incentives under
incomplete contracts (Baker, Gibbons, and Murphy, 1999, 2002). Related work emphasizes
hierarchy as an allocation of decision rights under communication frictions, analyzing how
authority and delegation shape organizational performance when information is costly to
transmit or acquire (Bolton and Dewatripont, 1994; Aghion and Tirole, 1997). More recent
theoretical and empirical contributions study how delegation, centralization, and manage-
rial structure respond to communication constraints, technological change, and competitive
pressures (Dessein, 2002; Rantakari, 2008; Alonso and Matouschek, 2008; Alonso, Dessein,
and Matouschek, 2008; Bloom et al., 2012a). Across this literature, hierarchy primarily
governs incentives, authority, and control. By contrast, we abstract entirely from incen-
tives, monitoring, strategic communication, and delegation, and instead focus on hierarchy
as an informational device that structures how dispersed assessments are aggregated into a

collective decision.



A closely related strand of the literature studies how collective decisions aggregate het-
erogeneous information. Early contributions by Sah and Stiglitz (1986, 1988) compare hi-
erarchical and polyarchical decision structures in terms of their error properties. Work by
Nitzan and Paroush (1982) and Shapley and Grofman (1984) characterizes optimal weighting
schemes for aggregating signals of unequal reliability, showing that differential influence can
improve decision accuracy when information quality differs. Related results appear in mod-
els of voting and information aggregation with heterogeneous expertise (Condorcet, 1785;
Austen-Smith and Banks, 1996). While these papers establish the value of unequal weight-
ing, they typically take the aggregation structure as given and do not study how hierarchical
categories or titles should be designed endogenously, nor how the depth of hierarchy trades
off against organizational costs.

A related strand of the literature studies hierarchy as a mechanism for allocating problem-
solving tasks and specialized knowledge. In influential work, Garicano (2000) models orga-
nizations as knowledge hierarchies in which lower-level agents handle routine problems while
rare or complex cases are escalated to more knowledgeable specialists. Subsequent research
examines how communication technology and cognitive constraints shape optimal hierarchi-
cal depth and expertise specialization (Garicano and Rossi-Hansberg, 2006; Garicano and
Prat, 2011), as well as related models of problem routing and knowledge allocation (Beggs,
2001). In this literature, hierarchy governs the assignment and escalation of problems across
levels, whereas we study how hierarchy shapes the aggregation of many simultaneous assess-
ments into a single collective decision.

Our paper complements these literatures by studying hierarchy exclusively as a mecha-
nism for structuring information aggregation when individual expertise is heterogeneous and
imperfectly observed. We model formal titles as coarse summaries of noisy evaluations of
expertise and allow organizations to choose both how much information to generate about
expertise and how finely to translate that information into hierarchical categories. Unlike

existing work, hierarchy in our model does not govern reporting lines, delegation, incen-



tives, or monitoring, and communication is costless conditional on titles. By endogenizing
the depth of hierarchy and the assignment of evaluations to titles, we characterize when
additional layers of hierarchy improve decision accuracy and when their marginal informa-
tional value is outweighed by organizational costs. This perspective highlights an additional
and distinct function of hierarchy—information filtering—that organizations must consider
alongside incentives, authority, and coordination when designing hierarchical structures.
The remainder of the paper is organized as follows. Section 2 presents the model: a
binary decision problem with heterogeneous and unobservable expertise, a noisy evalua-
tion technology, and the induced title structure. Section 3 analyzes decision-making under
a fixed evaluation-and-title system, characterizes the optimal title-based aggregation rule,
and derives a closed-form expression for the asymptotic error exponent that summarizes
decision performance. Section 4 studies the organization’s design problem, examining how
performance changes with evaluation intensity and hierarchy depth and characterizing op-
timal choices under cost constraints. Section 5 discusses the implications of the results for

organizational design and hierarchy. Section 6 concludes.

2 Model Setup

We develop a model of organizational decision-making under uncertainty in which an orga-
nization aggregates information from multiple agents whose expertise is heterogeneous and
not directly observable. Agents provide assessments that differ in reliability, and the organi-
zation uses observable titles—generated through imperfect evaluation—to structure decision
authority when forming a collective choice. The model specifies the state space, agents’
information, the evaluation and title-assignment process, and the aggregation rule used to

reach a decision.



State and Decision

The organization faces a binary decision regarding a project or action. The underlying state

of the world is denoted by w € {—1, 1}, where the labels —1 and 1 are purely notational.
The organization holds a symmetric prior,

1

Prlw=1)=Pr(w=-1) = o1

so any improvement in decision quality must come from internal assessments.

After collecting assessments from its members, the organization chooses an action
de{-1,1}.

The organization aims to match the realized state, and it does so through an internal decision
protocol that specifies how individual assessments are aggregated; this protocol is fixed ex
ante.

The organization’s payoff depends on whether the chosen action matches the state.
Specifically,
, ifd=uw,

11—k, ifd#w,

where k > 0 measures the loss from an incorrect decision.
To capture that decision stakes may rise with project scale and may vary across projects,
we let

k=",

where n indexes the scale or complexity of the project and A > 1 is a random variable
capturing the severity of losses conditional on failure. We assume that A\ is drawn from

a uniform distribution on [1,2], independently of all other primitives. The realization of



A reflects project-specific factors (e.g., technological risk, regulatory exposure, or market
conditions) and is observed by the organization before the final action is taken.

Finally, the organization may choose not to proceed with a project when its expected
payoff is negative. Throughout, expected performance is evaluated relative to an outside

option normalized to zero.

Workers and Information

The organization relies on assessments produced by its members. There are n workers
indexed by ¢ = 1,2,...,n, each of whom generates a binary assessment relevant to the
decision. Workers differ in their expertise, which affects the reliability of the information
they produce.

Worker i has an ability level 6; € (%, 1). Ability is not directly observable to the orga-
nization or to other workers. Conditional on the underlying state w, worker ¢ produces an

assessment s; € {—1,1}, where

PI‘(SZ‘ = w ‘ w,@i) = 91

Each assessment is therefore informative about the underlying state, though its reliability
varies across workers.

Conditional on the state, the assessments {s;}! ; are independent. Each assessment
represents primary information generated through task execution, analysis, or judgment,
rather than being filtered through organizational hierarchy. We abstract from incentive
provision and strategic communication in order to focus on how organizations aggregate
heterogeneous information when individual expertise is not directly observable.

The ability levels {6}, are drawn independently from a common distribution F' with
density f, supported on (%, 1). The distribution F is known to the organization, but the

individual ability levels {6;}7_; are not observed.



Evaluation and Titles

Before aggregating assessments, the organization may invest in evaluating workers’ expertise.
The evaluation technology is a test consisting of m independent items. Conditional on ability
0;, worker ¢ answers each item correctly with probability 6;, independently across items. Let

J; €{0,1,...,m} denote worker i’s number of correct answers. Then

J; ~ Binomial(m, 0;).

The organization observes J; but not 6;.
Based on the test score, the organization assigns each worker to one of L title categories.

An assignment rule is a deterministic map

r:{0,1,....,m} —{1,2,..., L},

and worker ¢’s title is

K;:=r(J;)e{l,2,...,L}.

Titles are publicly observable and are interpreted as coarse indicators of expected expertise.
The assignment rule induces, for each category k € {1,..., L}, the population share py,

the posterior density fi, and the corresponding mean ability &, defined by

These category-level objects summarize how the evaluation and title system compresses
information about expertise.
Implementing the evaluation and title system entails organizational costs, summarized

by a cost function

C'=C(m,L),

10



which depends on the intensity of evaluation m and the number of title categories L. We
assume that the cost is weakly increasing in both arguments, so that C,(-) > 0 and C(-) > 0.
The cost reflects resources devoted to administering evaluations, processing information, and
maintaining a more differentiated title structure. No further structure is imposed in the

model setup.

Aggregation Rule

The organization aggregates the information generated by its members to form a collective

decision. Individual assessments provide noisy information about the underlying state, and

observable titles affect how these assessments are incorporated into the final choice.
Formally, the organization’s decision rule maps the profile of assessments into an action.

An aggregation rule is therefore written as

d=0(s1,...,8n; K1,..., Kp,),

where 0 is a function from assessment profiles to a binary action, conditional on the realized
titles.

The aggregation rule captures how the organization combines information when forming
a collective decision. Titles enter as parameters that shape the relative influence of individual
assessments, while the assessments themselves are the primary carriers of information. The
characterization of optimal aggregation rules and the induced decision authority across titles

is developed in the analysis.

Organizational Design Problem

The organization chooses its internal decision structure to maximize expected performance
net of organizational costs. A design specifies how expertise is evaluated and incorporated

into collective decisions.
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Given a design (m, L,r,d) and a realization of A, the organization’s expected payoff
from undertaking the project is E[r(d,w) | A], where the expectation is taken over the
state, workers’ abilities, assessments, and induced titles. The organization may choose to
discontinue the project if its expected value is negative. As a result, the ex ante value of a
design is given by Ej[max{E[r(d,w) | A],0}].

The organizational design problem is

max Ek[max {E[r(d,w) | A, O}] — C(m,L).

m,L,r,0

The aggregation rule ¢ determines how individual assessments are combined given the re-
alized titles, while the evaluation and title system—summarized by the tuple (m, L, r)—governs
how much information about expertise is revealed and how it is coarse-grained into observable

ranks.

3 Analysis

This section analyzes the organization’s decision-making problem given an evaluation-and-
title system. We first characterize the aggregation rule that maximizes the probability of a
correct collective decision. We then derive a tractable measure of decision performance and
use it to study the organization’s choice of (m, L,r). Finally, we present benchmark cases

that bound achievable performance and discipline the design problem.

3.1 Optimal Aggregation Rule

Fix an evaluation-and-title system (m, L,r). The evaluation and title assignment induce
category shares {py}-_, and posterior mean abilities {&,.}E_,, where & = E[0; | K; = k].

Conditional on the state, individual assessments are independent and satisfy

Pr(s; =w |w, K; = k) = &.

12



Thus, conditional on titles, workers within the same category are observationally symmetric
from the organization’s perspective. The aggregation problem therefore reduces to choosing
a category-dependent influence weight for each assessment.

Among all decision rules that map (si,...,s,; Ky,...,K,) into an action d € {—1,1},

an optimal rule takes a likelihood-ratio form.

Lemma 1 (Optimal title-based aggregation). To maximize the probability of a correct col-

lective decision, Pr(d = w), an optimal aggregation rule is a weighted magjority rule:

d = sgn <i Wk, si> ,
i=1

where the optimal weight for category k is the log-odds ratio

wk:log<1 §k§ )
— Sk

When the weighted sum equals zero, the organization randomizes uniformly over {—1,1}.

Lemma 1 is a standard likelihood-ratio aggregation result in weighted voting with het-
erogeneous reliabilities (see, e.g., Nitzan and Paroush, 1982; Shapley and Grofman, 1984).
Intuitively, the rule places more weight on titles associated with higher posterior reliability,
and the log-odds form is the natural weight under conditional independence.

Lemma 1 reduces the aggregation problem to the category objects induced by the eval-
uation and title system; in particular, the optimal weights depend on the title system only
through the posterior means {&, }£_,. Equivalently, wy, is the log-likelihood-ratio contribution

of a category-k assessment under conditional independence.

3.2 Decision Performance and Organizational Design

Applying the optimal aggregation rule in Lemma 1 yields a tractable representation of de-

cision performance. The key object is an error exponent that summarizes how quickly the

13



probability of a wrong decision vanishes as the number of workers grows.

Fix (m, L,r) and consider the weighted majority rule in Lemma 1. Let

Pr(m,L,r) :=Pr(d 4w |m,L,r)

n

denote the error probability with n workers under this rule, where the probability is taken

over (OJ, {ei}?:b {Ji}?:b {Ki}zn:lv {Si}?:l)'

Definition 1 (Error exponent). The (asymptotic) error exponent is

1
¢(m, L,r) := — lim —logPr(m, L,r),

n—oo N n

whenever the limit exists.

When the error exponent exists, the probability of a wrong decision satisfies
Pr(m, L,r) = e "ML asn — oo,
n

A larger ¢(m, L,r) corresponds to faster exponential decay of the error probability as
team size increases. Under the optimal title-based weights, ¢(m, L, r) admits a closed-form
expression in terms of the category objects (py,&)E_, induced by the evaluation and title

system.

Proposition 1 (Error exponent under optimal title-based weights). Under the weighted

majority rule in Lemma 1, the error exponent satisfies

¢(m, L,r) = —log [Z 2ps, \/ék(l — fk)] )

Proposition 1 implies that, for a fixed evaluation-and-title system, decision performance

depends on (m, L, r) only through the induced category objects (pg, &, )E_,.

14



We now express the organization’s design objective in terms of ¢(m, L, ). Recall that the
loss from an incorrect decision is kK = A", where A is drawn uniformly from [1, 2] and observed
by the organization before choosing the action. Under the weighted rule, the organization’s

expected payoff conditional on A is

E[ln(d,w) | A]=1—=A\" lflr(m, L,r).
Using Proposition 1, this becomes

E[r(d,w) | \] = 1 — Ane m¢mbn),

As n — oo, the sign of log A — ¢(m, L,r) determines whether the project has positive
value. With the outside option normalized to zero, the organization proceeds if and only if

A\ < e?tmLr) - Therefore, the ex ante value of design (m, L,r) is
Ex[max {E[r(d,w) | A],0}] = e?mLr) 1,

for ¢(m, L,7) € (0,log2), since A ~ U[1,2] and for e® € (1,2), the probability is e® — 1.
The organizational design problem therefore reduces to choosing (m, L,r) to maximize

performance net of organizational costs:

max e?™E) 1 — C(m, L).

m,L,r

3.3 Benchmarks

Benchmarks discipline the organizational design problem by providing bounds on achievable

performance and clarifying the role of evaluation and hierarchy in the model.
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First-best benchmark. Suppose individual expertise 6; is publicly observed and can be
used directly in aggregation, so that no evaluation or title system is required and no or-

ganizational cost is incurred. In this case, the organization assigns each assessment the

0;
w; = log(1 _9) ,

and aggregates assessments using the corresponding likelihood-ratio rule. Since abilities are

weight

observed, the aggregation rule fully exploits all available information.
Let ¢'2 denote the resulting error exponent. By the law of large numbers and standard

large-deviation arguments, the error exponent satisfies

¢FB::—4og[/$24v@?f3?5dfweﬂ,

where F' is the cross-sectional distribution of expertise. The associated value is

1 -1
UFB — ¢ 1 = {/ 4\/8(1—9)dt9:| -4 x00m
1/2 m

This benchmark represents the maximal performance attainable in the model, since any

feasible design must rely on imperfect information about individual expertise.

No-evaluation benchmark. At the opposite extreme, consider a design with no eval-
uation and a single title category (m = 0, L = 1). In this case, all workers are treated
symmetrically and receive the same aggregation weight. The induced posterior mean ability

is ¢ = E[#;], and the error exponent reduces to

oV = —log[21/E(1- )]

16



When 6; ~ U[1/2,1], the mean ability is £ = 3/4, so the corresponding value is

e 5(1—5)}_1—1— [2 i}_1—1— [2-£]_1—1—i—1mo.155.

16 4 \/g

This benchmark captures decision-making without internal differentiation of expertise and

serves as a lower bound on performance when evaluation and hierarchy are absent.

Together, these benchmarks delimit the scope for organizational design. Evaluation and
hierarchy improve performance by moving the organization away from the no-evaluation
benchmark toward the first-best bound, but cannot surpass the latter. The design problem
studied in this paper concerns how much of this gap can be closed, and at what organizational

cost.

4 Results

This section presents the main results of the analysis. We examine how decision perfor-
mance varies with the organization’s design choices and report the implications of changes
in evaluation intensity and hierarchical structure. The section combines analytical charac-
terizations with numerical illustrations to describe how performance responds to different

designs (m, L, r).

4.1 Performance Without Organizational Costs

We begin by examining organizational performance in the absence of organizational costs,
so that C'(m, L) = 0. This benchmark isolates the informational value of evaluation and
hierarchy and clarifies the shape of the performance function before introducing tradeoffs.
Figure 1 plots performance as a function of hierarchy depth L holding evaluation intensity
fixed at m = 300. Increasing the number of title categories substantially improves perfor-

mance at low levels of hierarchy, but the gains flatten quickly. Beyond a modest number of

17



Relationship between L and ¢ (m = 300)

0.26 -

0.24

0.22 ~

e? -1

0.20 ~

0.16 -

0 50 100 150 200 250 300
L (level of hierarchy)

Figure 1: Organizational performance as a function of hierarchy depth L for fixed evaluation
intensity m = 300.

levels, additional differentiation yields only marginal improvements. Performance converges
to an upper bound corresponding to the first-best benchmark derived in Section 3.3.

Figure 2 shows performance as evaluation intensity increases when the number of title
categories grows with the number of tests according to L. = m + 1. Performance rises
rapidly at low levels of testing and then exhibits pronounced concavity, approaching the
same upper bound. This case represents an extreme form of organizational differentiation in
which increasingly fine evaluations are translated into correspondingly fine title distinctions.

To disentangle the roles of evaluation and hierarchy, Figure 3 plots performance as a
function of evaluation intensity m for fixed hierarchy depths L € {5,10,50}. Across all
cases, performance is increasing and concave in m, with diminishing marginal gains from
additional testing. Holding L fixed limits the maximal attainable performance, but even
coarse hierarchies capture a substantial fraction of the available gains once evaluation is
sufficiently informative.

Taken together, these results highlight two robust patterns. First, both evaluation in-
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Relationship between m and ¢(L=m+ 1)
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Figure 2: Organizational performance as evaluation intensity m increases when hierarchy
depth grows according to L =m + 1.

Relationship between nand ¢ (L=5) Relationship between n and ¢ (L =10) Relationship between n and ¢ (L =50)
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(a) L=5 (b) L =10 (¢) L =50

Figure 3: Organizational performance as a function of evaluation intensity m for fixed hier-
archy depths L € {5,10,50}.

tensity and hierarchy depth improve decision performance by sharpening the allocation of
decision authority toward more reliable contributors. Second, the informational returns to
both dimensions are strongly diminishing, and performance converges rapidly toward its
upper bound. These features foreshadow the emergence of finite optimal designs once orga-

nizational costs are introduced.
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Optimal m when C(m, L) =am (L=5) Optimal m for C(m,L)=am (L=m + 1) Optimal m when C(m, L) =am (L=10)
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Figure 4: Optimal evaluation intensity m* as a function of the marginal testing cost a under
linear evaluation costs.

4.2 Optimal Evaluation Intensity

We now introduce organizational costs and study how they shape the optimal amount of
evaluation. Throughout this subsection, the cost of evaluation is linear in the number of
tests,

C(m,L) = am,

where o > 0 measures the marginal cost of administering an additional test. For each value

of «a, the organization chooses m to maximize

U(m, L) = e?™D — 1 — am,

taking the hierarchy depth L as given. For each (m, L), the assignment rule r is optimized.
Figure 4 plots the optimal number of tests m* as a function of a under three organizational
environments. The left panel fixes hierarchy depth at L = 5, the middle panel considers the
case in which hierarchy expands with evaluation according to L = m+ 1, and the right panel
fixes hierarchy depth at L = 10.
Across all cases, the optimal evaluation intensity is decreasing in the marginal cost a.

When testing is inexpensive, the organization invests heavily in evaluation to improve the

20



allocation of decision authority across titles. As « increases, the marginal informational
benefit of additional testing is outweighed by its direct cost, leading to discrete reductions
in m*. These stepwise patterns reflect both the integer nature of the design problem and

the diminishing returns to evaluation documented in Section 4.1.

4.3 Optimal Hierarchy Depth

We next examine how the optimal depth of hierarchy responds to organizational costs. In

this subsection, the cost function takes the form

C’(m, L) = 8L,

where § > 0 captures the marginal cost of maintaining an additional hierarchical level.
Evaluation intensity m is fixed, and for each (5, m) the organization chooses the hierarchy

depth L to maximize

U(m, L) = e?™D 1 - 8L,

with the assignment rule r optimized for each (m, L).

Figure 5 plots the optimal hierarchy depth L* as a function of § for different fixed values
of evaluation intensity m. Across all cases, the optimal hierarchy depth declines sharply
as the marginal cost of hierarchy increases. When [ is small, the organization adopts a
relatively deep hierarchy in order to exploit fine distinctions in expected expertise. As
rises, the informational gains from additional levels are quickly dominated by organizational
costs, leading to discrete reductions in L*.

Two patterns are worth emphasizing. First, the optimal hierarchy depth is highly sen-
sitive to even modest increases in [3: most of the reduction in L* occurs at low values of
the marginal cost. Second, higher evaluation intensity supports deeper hierarchies, but only
when the cost of hierarchy is sufficiently low. Once [ exceeds a moderate threshold, the

optimal structure collapses to a shallow hierarchy regardless of how informative evaluation
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Figure 5: Optimal hierarchy depth L* as a function of the marginal hierarchy cost 3, for
selected values of evaluation intensity m.

is.

Together, these results highlight that hierarchy depth is the most fragile dimension of
organizational design. While evaluation intensity can be adjusted smoothly in response to
costs, the optimal number of hierarchical levels responds discretely and declines rapidly as

coordination and communication costs increase.

4.4 Structure of the Optimal Assignment Rule

We focus on coarser hierarchies that are empirically more relevant and visually informative.
The figures below display the aggregated assignment rules for L = 5, L = 10, and L = 20,
holding evaluation intensity fixed at m = 300.

Figure 6 shows that, for L =5, L = 10, and L = 20, the optimal assignment rule groups
wide ranges of test outcomes into a small number of title categories. Lower titles pool a large
mass of relatively uninformative evaluations, while higher titles are reserved for increasingly
extreme test outcomes. As L increases, the partition becomes progressively finer, but the
additional cuts occur primarily in the upper tail of the evaluation distribution.

Two patterns emerge. First, optimal assignment rules are monotone in evaluation out-
comes: higher test scores are always mapped to weakly higher titles. Second, hierarchy depth

primarily affects how finely the upper tail of the evaluation distribution is separated. Addi-
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 Bemouli tests ) Result of Bemoul tests ()

(b) L =10 (c) L =20

Figure 6: Aggregated assignment rules for m = 300 under different hierarchy depths.

tional title categories are used to refine distinctions among high-performing workers, while
lower-performing workers remain pooled into broad categories. This reflects diminishing re-
turns to differentiation at low levels of expected expertise, where additional information has
little effect on decision quality.

Overall, these results confirm that the role of the assignment rule is largely supportive.
Once the aggregation rule is optimally chosen, the main determinants of performance are
evaluation intensity and hierarchy depth. The precise shape of the assignment rule matters
primarily insofar as it governs how finely high levels of expertise are distinguished, which

explains why changes in 7 have smaller quantitative effects than changes in m or L.

5 Discussion

This paper studies hierarchy as a mechanism for allocating decision authority when individual
expertise is heterogeneous and imperfectly observed. Titles summarize noisy evaluations of
expertise and determine how individual assessments are weighted in collective decisions.
The analysis highlights how organizational performance depends on three design choices:
evaluation intensity, hierarchy depth, and the assignment of evaluations to titles.

A central finding is that both evaluation and hierarchy improve decision quality, but with
strongly diminishing returns. More intensive evaluation sharpens posterior beliefs about ex-
pertise, while additional title categories allow the organization to translate these beliefs into
finer distinctions in decision authority. However, once the most informative distinctions

are already captured, further refinement yields little additional benefit. As a result, perfor-
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mance converges quickly toward an upper bound well below the first-best benchmark. This
explains why relatively simple organizational structures can perform nearly as well as much
more complex ones.

The results also reveal an important asymmetry between evaluation intensity and hier-
archy depth. Evaluation can be adjusted relatively smoothly in response to costs, whereas
hierarchy depth responds discretely. Small increases in the marginal cost of hierarchy lead to
sharp reductions in the optimal number of title categories. This reflects the fact that hierar-
chy primarily refines distinctions among high-expertise workers: when hierarchy is costly, the
organization optimally collapses many intermediate ranks while preserving a small number
of top positions. In this sense, hierarchy depth is the most fragile dimension of organizational
design.

The analysis further clarifies the role of the assignment rule. While the optimal rule is
monotone and respects evaluation rankings, its detailed shape plays a secondary role once
aggregation weights are optimally chosen. Changes in performance are driven mainly by
how many distinctions the organization makes, not by the exact placement of thresholds.
This helps explain why the numerical structure of assignment rules varies across environ-
ments without substantially affecting performance. From a design perspective, this suggests
that organizations can rely on relatively simple and robust assignment procedures without
sacrificing much efficiency.

Several limitations of the analysis point to directions for future work. First, the model
is static and abstracts from learning and promotion over time. In practice, titles evolve as
workers accumulate performance histories, and hierarchical structures may serve additional
incentive or career concerns. Second, the evaluation technology is stylized as a sequence of
independent Bernoulli tests. Other screening mechanisms—such as peer evaluation, project
outcomes, or task-specific signals—may interact differently with hierarchy. Finally, the model
treats communication costs in reduced form through the cost of hierarchy, rather than mod-

eling explicit information loss across layers.
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Despite these simplifications, the framework captures a fundamental tradeoff in organiza-
tional design. Hierarchy improves decision-making by concentrating authority among more
reliable contributors, but only up to the point where organizational costs outweigh infor-
mational gains. The results provide a rationale for why many organizations adopt shallow
hierarchies with limited differentiation, and why attempts to excessively refine internal rank

structures often yield little improvement in decision quality.

6 Conclusion

This paper studies how organizations should design internal hierarchies when individual ex-
pertise is heterogeneous, imperfectly observed, and must be aggregated into a collective deci-
sion. Titles arise as a coarse summary of noisy evaluations of expertise and serve to allocate
decision authority among contributors. By embedding hierarchy into a formal information-
aggregation framework, the analysis clarifies how evaluation, rank differentiation, and col-
lective decision-making interact.

The model delivers three main insights. First, both evaluation intensity and hierarchy
depth improve decision accuracy by concentrating influence on more reliable contributors,
but the gains exhibit strong diminishing returns. As a result, relatively simple organizational
structures capture most of the achievable improvements in decision quality. Second, hierarchy
depth responds sharply to organizational costs. Even modest increases in the marginal cost
of hierarchy lead to substantial reductions in the optimal number of title categories, whereas
evaluation intensity adjusts more smoothly. This makes hierarchy depth the most fragile
dimension of organizational design. Third, while the optimal assignment of evaluations to
titles is monotone and intuitive, its detailed shape plays a secondary role once aggregation
weights are optimally chosen. Performance is driven primarily by how many distinctions the
organization makes, rather than by the precise placement of thresholds.

Together, these results provide a disciplined explanation for why many organizations
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rely on shallow hierarchies with limited rank differentiation, even when decision-making
is complex and expertise is unevenly distributed. Hierarchy improves decision quality by
filtering noise and concentrating authority, but only up to the point where organizational
costs outweigh informational gains. Beyond that point, additional layers contribute little
and may be counterproductive.

More broadly, the framework highlights the informational role of hierarchy distinct from
its incentive or control functions. By viewing titles as a mechanism for compressing in-
formation about expertise and structuring influence, the analysis offers a new perspective
on organizational design in environments where direct knowledge of ability is limited and

collaboration is transient.
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A  Proofs

Proof of Proposition 1. From the main text, we know that ¢(m, L, r) under a fixed evaluation-

and-title system is

1
¢(m,L,r) = — lim —logPr(m, L,r) where Pr(m,L,r) =Pr(d#w|m,L,r).

n—oo M n

The key is to pin down Pr(d # w | m, L, ) under the weighted majority rule stated in Lemma
1. Recall that for each category k € {1,..., L}, the population share py, the posterior density

fx, and the corresponding mean ability &, defined by
pe=Pr(Ki=k),  [ful0)=fO0|Ki=k), &=E[0;|K; =k

Without loss of generality, we assume that w = 1 and & < & < ... < £,. Now denote

wy = log 1f’2k, and X; as the random variable of the weighted vote of agent ¢, where

We can further write X; as

wy  with probability p1&;
—w;  with probability p;(1 — &)
we  with probability p2&,

Xi=4q —w, with probability py(1 — &)

wy,  with probability pr&r

—wy,  with probability pr(1 — &)

Let S, = X1 + Xo + ... + X,,, then the decisionisd =1if 5, > 0,d = —-11if 5, <0, and
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random when S,, = 0. Now by the weighted majority rule stated in Lemma 1, we know that
1
Pr(d # w) = Pr(S, <0) + 5 Pr(S, = 0).

1 1
As we will show in the later proof, lim —log Pr(S, < 0) = lim —logPr(S, <0). Thus, we
n—oo

n n—oo 1,

can conclude that

1
¢(m,L,r) = — lim —logPr(S, <0).
n—oo N

Moment generating function

Calculate the moment generating function:

M(t) = E[e"] = Zpk (Skew’“t +(1-— fk)e_wkt) )

Lemma 2. M(t) is strictly convex, and so is log M (t).

Proof. Taking derivatives, we obtain

L
M'(t) = pruwy <§k6w’“t - (1= fk)e_w’“t>,
K—1

L
M) = 3 prod (6 + (1 - ) ) >0,
k=1
Thus M (t) is strictly convex. Moreover,

dlog M(t)  M'(¢) d*log M(t)  M"(t)M(t) — (M'(t))?

dt M(t)’ ez (M(t))?

Let

ay = \/Pk (fkewkt +(1- §k)€_“”“t), by, = wiay.
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By the Cauchy-Schwarz inequality,

We also have

(iakbkf - (ipkwk (e +(1-g)e™) ) > (ipkwk (G —(1-g)e ™)) = (M)

k=1

Therefore,
d*log M (t) _ M"(t)M(t) — (M'(t))?
d? (M(t))>

> 0,

so log M (t) is strictly convex. Q.E.D.

dlog M(t M) -
ogdt ® _ M((t)) is (—wp, wy).

Lemma 3. The range of

Proof. We have already established that Llog M) 0, so MUY g strictly increasing in ¢.

dt? M(t)
Moreover,
M'(t) . 25:1 DrWy (fkew’“t —(1— 5;9)@*“’“)
1m = l1im T = —wy,
t——00 M(t) t——00 Zk:l Di (fkewkt + (1 _ gk)efwkt)
and

M@ _ S Drw (Epet — (1 — &y )e k)

im —~% = = wy,.
t—oo M(t)  t—oo 25:1 Di ({kewkt +(1— é“k)e—wkt)

M(1)
M(©)

Therefore, the range of is (—wp,wr). Q.E.D.

Rate function
Denote the rate function as

I(x) :=sup tx — log M(t).

teR
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Now let

L
g(z,t) =tx —log M(t) = tx — log [Zpk <€kewkt +(1- gk)e—wkt>] 7

k=1

then I(x) = sup,cp 9(z, 1).
When z < —wp, we have g(z,t) — oo as t - —00, so I(z) = oc.
When z > wp, we have g(z,t) — oo as t — 00, so [ (z) = oc.

When » = —wy,

e—’th

S (1 e )

ed(at) —

1
préLe®rt + pr(l — &0) + 2] pr(Grelntonlt 4+ (1 — g )elwr—wnt)

Thus, e/ is decreasing in ¢, so the supremum is attained as t — —oo, and

I(—wg) = —log (PL(l - §L))
When z = wy,

e’th

S P (Epert 4 (1 — & )ewit)

e9(x:t)

1

prér +pr(l — &p)e2wet 4+ 301 py (Epe=(wrmwnt 4 (1 — & )e~(wrtwt)’

Thus, e/ is increasing in ¢, so the supremum is attained as ¢t — oo, and

I(wg) = —log (préL).
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When z € (—wp,wp), since g(x,t) is concave in ¢, the supremum is attained at t* satisfying

dg(z,t)  M'(t)

ot M@

M'(t)
M(t)

Since is strictly increasing in ¢, there is a unique solution ¢*. Thus, the rate function is

at* —log M(t*) x € (—wp,wy),
—log (pr(1 = €1)) == —wy,

—log (présr) T =wy,

00 x & |[—wp,wg).

Lemma 4. t* is continuous and increasing in x.

M'(t)  M'(t)

M) I is continuous and strictly increasing in ¢, and the

Proof. t*(x) is solution to x =

range is (—wr, wr). So for each x € (—wr,wy), there is a unique t* € R such that x = M
Also, lim;_, A]é;((f)) = — Wy, limy_, ];\/[4/—((5)) = W,,. Thus, t* - —oc0 as z — —w,,, and t* — 00
as T — Wy,.

By implicit function theorem, we have

a1 1
o~ Paen — _wana-orege - 0
o2 (D)2
So t* is increasing in x. Q.E.D.

Lemma 5. I(z) is well-defined and continuous in x on [—wr, wr).

Proof. When x € (—wp,wr), I(x) is well-defined since ¢* is unique. Also, I(x) is well-defined

when © = —wy, and x = wy,. Thus I(x) is well-defined.

M (t%)
M(t%)

When z € (—wp,wy), we have t* satisfies z = . Since t* is a unique map between x
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and t*, we can write I(z) as:

Since M’(t) and M (t) are continuous in ¢, [ (J]‘\/g((tt))) is continuous in ¢. Thus, I(x) is continuous

on (—wp,wr).

Let t = —o0,
lim /™ = lim et%f(%) ~log M(?)
$—>—wz t——00
o M (1)
l. e M)
= lim
t——00 M(t)
£ M (1)
l. e M)
= lim
L
=m0 3 oy pr(Gret + (1 —1§k)€_w’“t)
= llm 7 7
t——00 25:1 pk(fke(wk_%((tt))’)t + (1 . §k)e(_w’“_11V\I4((tt)) )t
Since tlim AA{[,((:)) = —wp, so for an w* € (—wr, —wr_1), there is a t such that when ¢ < ¢,
——00
M'(t)

Thus, we have
M (1)

0< Lm e W) < lim et =0, k=1,2,...,m— 1.

t——o00 t——o00

Similarly,
_M@ .
0< lim ™ Mo < lim e =0 k=12, .. m.
t——o0 t——o0
Thus, we have:
1
lim /@ = lim TS
xﬁfwzr t——o0 pL(l _ §L)6(_wL_7M(t) )t
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M'(t))t

The key is the term (—wj, — S0

i prwi((1 — &p)e " — &rer!)

i )t = lim = —wr |t
t——o0 M t t——o0
) Pr(§pest + (1 — & )ewrt)

M“ ijh

kwk((l o gk) wL—wk)t _ gke(U)Lerk)t)

- tLiEIloo = 2 — Wy, t
Z (éke (wr+wg)t + (1 _ gk) (wr,— wk)t>
k=1
L—-1
Z <U)k - U)L)<]. — gk) (wr,—wy)t + Z pk(wk + wL)gke (wr, 4w )t
= lim | = k=1
t——o0 L
Z pk(fke(wLer’“)t -+ (1 — fk)e(wL*wk)t)
k=1
L—1 I
S Dain — we) (1 — E 9 4 3 g+ 1w )teles o0
= lim = k=1
t——o0

L
> pr(&petwrtunt 4 (1 — & Jelwr—wnlt)

All terms except (1 — &7)e(r=)t will go to zero as t — —oo. Thus,

N S

Thus, we have:

lim 61(33) = ;
:):ﬁfwz pL(l - gL)

I(x) is continuous at —wy. Similarly, we can prove that I(z) is continuous at wy. Thus,

I(x) is continuous on [—wp, wy]. Q.E.D.

Lemma 6. Let 2° = S5 | ppwi(2& — 1)). When & < 2°, I is decreasing; when x > 2°, I is

increasing. 1 achieve its minimum at x°.

Proof. As before, we can write I(z) as:
1(2) = g, #(2)).
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By envelope theorem, we can get:

I'(z) = go(x, 1" (z)) = t*(x)

Since t*(x) is strictly increasing in x, we need to find the point where t* = 0. When t* = 0,

we have:

o M) Y& - (1-&)

Tr =

L
26, — 1

Thus, when z < 2°, I'(x) = t*(x) < 0, so [ is decreasing; when z > 2°, I'(x) = t*(z) > 0, so

I is increasing. Since I is continuous, I achieve its minimum at z°. Q.E.D.

Applying Cramér’s theorem

Cramer’s theorem says that % satisfies a large deviation principle with rate function I(z).

Now we know I(x) is decreasing when < 2% and 2° = 37" | pjw;(2¢; — 1)) > 0. Thus,

inf I(x) = inf I(x) = 1(0).

<0 <0

&
1-¢°

If we have the optimal aggregation rule where the weights are w; = log when z = 0,

t*(0) = —3. This can be verified by:
1

M(=3) = D oprws(gen P - (1 - ge D)
j=1
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Thus
I1(0)= —3-0—logM(—3)

2

= —105-’;2179'(56%(_% + (1= &)e i

= logZpg <1_§])
= —log [; 2p; \/MI

By Cramer’s theorem, we have

.1 1 T
Jim —log Pr(S, <0) = lim ~logPr(S, < 0) = log [2 2pj\/&(1 — fj)]
p

l\)\»—‘

)

ru-6)(F2)

[NIES
N

Now we know that I(z) is decreasing when z < 2%, and

L
ZL‘O = Zpkwk(%k — 1) >0
k=1

Thus,
inf I(x) = inf I(x) = 1(0).

<0 <0

Under the optimal aggregation rule with weights wy, = log<lf’“§k>, we have t*(0) = —%. This

can be verified by
L

) = Zpkwk<§k6wk -3) —(1—&)e %)>

k 1

e O e
= ;pkwk(\/ﬁk(l — &)~ V&l -&)) =

M (-

N =
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Therefore,

By Cramér’s theorem,

n—oo M,

Thus, we conclude that

~3+0-log 1 (-)

L
1 1
—1og Y pe(Ge™ 2 + (1 - g)e D)
k=1

et
—mﬁm@?ﬂ.

L
1 1
lim —log Pr(S, < 0) = lim —logPr(S, < 0) = log [Z 2pi/Ep(1 — §k)] .
k=1

n—oo N,

¢ = —log [Z 2pi/&i(1 — §k)] :
k=1

Q.E.D.
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